Quantum Graph Reachability Problem

Mingsheng Ying
(joint work with Shenggang Ying)

University of Technology Sydney, Australia
Institute of Software, Chinese Academy of Sciences, China
Tsinghua University, China
Outline

Introduction

Basics of Quantum Theory

Graphs defined by Quantum Dynamics

Decomposition of the State Space

Algorithms for Computing Reachability in Quantum Graphs

Conclusion
Outline

Introduction

Basics of Quantum Theory

Graphs defined by Quantum Dynamics

Decomposition of the State Space

Algorithms for Computing Reachability in Quantum Graphs

Conclusion
Graph reachability problem is everywhere

- **Databases**

Graph reachability problem is everywhere

- *Databases*

- *Algorithms and complexity*
Graph reachability problem is everywhere

- Databases
- Algorithms and complexity
- Model-checking
Graph reachability problem is everywhere

- **Databases**

- **Algorithms and complexity**

- **Model-checking**

- **Program analysis and verification**
Graph reachability problem is everywhere

- Databases

 [1] M. Yannakakis, Graph-theoretic methods in database theory,
 PODS’1990

- Algorithms and complexity

- Model-checking

- Program analysis and verification

- Testing of digit circuits and communication protocols
Graph reachability problem is everywhere

- **Databases**

- **Algorithms and complexity**

- **Model-checking**

- **Program analysis and verification**

- **Testing of digit circuits and communication protocols**

- **More**
Why quantum graph reachability problem?

- **Model checking quantum systems**

Why quantum graph reachability problem?

- **Model checking quantum systems**

- **Analysis and verification of quantum programs**
Quantum programming environment: Q|SI>

- A quantum programming language
Quantum programming environment: Q|SI>

- A quantum programming language
- Compiler: IBM QASM 2.0
Quantum programming environment: Q|SI>

- A quantum programming language
- Compiler: IBM QASM 2.0
- Simulator: Sunway Taihu Light — 45 qubits
Quantum programming environment: Q\|SI>

- A quantum programming language
- Compiler: IBM QASM 2.0
- Simulator: Sunway Taihu Light — 45 qubits
- Termination analysis: reachability problem
Quantum programming environment: Q\text{	extasciitilde}SI>

- A quantum programming language
- Compiler: IBM QASM 2.0
- Simulator: Sunway Taihu Light — 45 qubits
- Termination analysis: reachability problem
- Verification: a theorem prover for quantum Hoare logic — Isabelle/HOL
Possible applications of quantum graph reachability problem to Data Science in future quantum computing era???
Outline

Introduction

Basics of Quantum Theory

Graphs defined by Quantum Dynamics

Decomposition of the State Space

Algorithms for Computing Reachability in Quantum Graphs

Conclusion
Quantum states

- The state space of a quantum system is a Hilbert space \mathcal{H}: a complex vector space with an inner product, complete — every Cauchy sequence has a limit.
Quantum states

- The *state space* of a quantum system is a *Hilbert space* \mathcal{H}: a complex vector space with an inner product, complete — every Cauchy sequence has a limit.
- For finite n, an n-dimensional Hilbert space is essentially the space \mathbb{C}^n of complex vectors.
Quantum states

- The *state space* of a quantum system is a *Hilbert space* \mathcal{H}: a complex vector space with an inner product, complete — every Cauchy sequence has a limit.
- For finite n, an n-dimensional Hilbert space is essentially the space \mathbb{C}^n of complex vectors.
- A *pure quantum state* is represented by a *unit vector* — a vector with length 1.
Quantum states

- The state space of a quantum system is a Hilbert space \(\mathcal{H} \): a complex vector space with an inner product, complete — every Cauchy sequence has a limit.
- For finite \(n \), an \(n \)-dimensional Hilbert space is essentially the space \(\mathbb{C}^n \) of complex vectors.
- A pure quantum state is represented by a unit vector — a vector with length 1.
- Dirac’s notation: \(|\varphi\rangle, |\psi\rangle, \ldots \) denote pure states.
Qubits

- A *Quantum bit* (qubit) is the quantum counterpart of *bit*.
Qubits

- A *Quantum bit* (qubit) is the quantum counterpart of *bit*.
- The state space of a qubit is the 2-dimensional Hilbert space.
Qubits

- A *Quantum bit* (qubit) is the quantum counterpart of *bit*.
- The state space of a qubit is the 2-dimensional Hilbert space.
- A pure state of qubit is:

\[
|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}
\]

with \(|\alpha|^2 + |\beta|^2 = 1\).
Qubits

- A Quantum bit (qubit) is the quantum counterpart of bit.
- The state space of a qubit is the 2-dimensional Hilbert space.
- A pure state of qubit is:

\[|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad \text{with } |\alpha|^2 + |\beta|^2 = 1. \]

- A qubit can be in the basis states:

\[|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
Qubits

- A *Quantum bit* (qubit) is the quantum counterpart of *bit*.
- The state space of a qubit is the 2-dimensional Hilbert space.
- A pure state of qubit is:

\[|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad \text{with} \quad |\alpha|^2 + |\beta|^2 = 1. \]

- A qubit can be in the basis states:

\[|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

- A qubit can also be in a superposition of \(|0\rangle, |1\rangle\), e.g.

\[|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

\[|--\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \]
Mixed states

- A *mixed state* is represented by an *ensemble*

 \[\{(p_1, |\psi_1\rangle), \ldots, (p_k, |\psi_k\rangle)\} \]
Mixed states

- A *mixed state* is represented by an *ensemble*

 \[\{(p_1, |\psi_1\rangle), \ldots, (p_k, |\psi_k\rangle)\} \]

- **Intuition:** the system is in state $|\psi_i\rangle$ with probability p_i — a quantum generalisation of a probability distribution over states.
Density operators

- In the n-dimensional Hilbert space \mathbb{C}^n, an operator is represented by an $n \times n$ complex matrix A.

- Trace of an operator A: \[\text{tr}(A) = \sum_{i} A_{ii} \] (the sum of the entries on the main diagonal).

- Density operator: a positive semidefinite matrix r, $\text{tr}(r) = 1$.
Density operators

- In the \(n \)-dimensional Hilbert space \(\mathbb{C}^n \), an operator is represented by an \(n \times n \) complex matrix \(A \).
- The trace of an operator \(A \):

\[
\text{tr}(A) = \sum_i A_{ii}
\]

(the sum of the entries on the main diagonal).
Density operators

- In the n-dimensional Hilbert space \mathbb{C}^n, an operator is represented by an $n \times n$ complex matrix A.
- The trace of an operator A:

$$tr(A) = \sum_i A_{ii}$$

(the sum of the entries on the main diagonal).
- **Density operator**: a positive semidefinite matrix ρ, $tr(\rho) = 1$.

Mixed states = density operators

- **Notation:** matrix $|\psi\rangle\langle\psi|$ — the multiplication of column vector $|\psi\rangle$ and the row vector $\langle\psi|$ (the conjugate and transpose of $|\psi\rangle$).
Mixed states = density operators

- **Notation**: matrix $|\psi\rangle\langle\psi|$ — the multiplication of column vector $|\psi\rangle$ and the row vector $\langle\psi|$ (the conjugate and transpose of $|\psi\rangle$).
- For any mixed state $\{(p_1, |\psi_1\rangle), ..., (p_k, |\psi_k\rangle)\},$
 \[
 \rho = \sum_{i} p_i |\psi_i\rangle\langle\psi_i|
 \]

 is a density operator
Mixed states = density operators

- **Notation**: matrix $|\psi\rangle\langle\psi|$ — the multiplication of column vector $|\psi\rangle$ and the row vector $\langle\psi|$ (the conjugate and transpose of $|\psi\rangle$).
- For any mixed state $\{(p_1, |\psi_1\rangle), \ldots, (p_k, |\psi_k\rangle)\}$,
 \[
 \rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|
 \]
 is a density operator
- For any density operator ρ, there is a (not necessarily unique) mixed state $\{(p_1, |\psi_1\rangle), \ldots, (p_k, |\psi_k\rangle)\}$ such that
 \[
 \rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|.
 \]
Mixed states = density operators

- **Notation:** matrix $|\psi\rangle\langle\psi|$ — the multiplication of column vector $|\psi\rangle$ and the row vector $\langle\psi|$ (the conjugate and transpose of $|\psi\rangle$).
- For any mixed state $\{(p_1, |\psi_1\rangle), ..., (p_k, |\psi_k\rangle)\}$,
 \[
 \rho = \sum_i p_i |\psi_i\rangle \langle\psi_i|
 \]
 is a density operator.
- For any density operator ρ, there is a (not necessarily unique) mixed state $\{(p_1, |\psi_1\rangle), ..., (p_k, |\psi_k\rangle)\}$ such that
 \[
 \rho = \sum_i p_i |\psi_i\rangle \langle\psi_i|.
 \]
- In particular, a pure state $|\psi\rangle$ is identified with the density operator $\rho = |\psi\rangle\langle\psi|$.
Mixed states = density operators

- Mixed state of a qubit:

\[
\left\{ \frac{2}{3}, |0\rangle, \frac{1}{3}, |\psi\rangle \right\}
\]
Mixed states = density operators

- Mixed state of a qubit:

\[
\left\{ \left(\frac{2}{3}, |0\rangle \right), \left(\frac{1}{3}, |\rangle \right) \right\}
\]

- Density matrix:

\[
\rho = \frac{2}{3} |0\rangle \langle 0| + \frac{1}{3} |\rangle \langle \rangle = \frac{1}{6} \begin{pmatrix} 5 & -1 \\ -1 & 1 \end{pmatrix}
\]
Unitary operators

- *Dynamics* of a closed quantum system is described by the Schrödinger equation:

\[ih \frac{d|\psi\rangle}{dt} = H|\psi\rangle \]
Unitary operators

- *Dynamics* of a closed quantum system is described by the Schrödinger equation:

\[i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle \]

- Discrete-time solution — a unitary operator U:

\[U^\dagger U = UU^\dagger = I \]

where U^\dagger is the conjugate and transpose of U
Unitary operators

- *Dynamics* of a closed quantum system is described by the Schrödinger equation:

\[i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle \]

- Discrete-time solution — a unitary operator \(U \):

\[U^\dagger U = UU^\dagger = I \]

where \(U^\dagger \) is the conjugate and transpose of \(U \)

- *unitary transformation*:

\[|\psi\rangle \mapsto U|\psi\rangle \]
Quantum gates – one-qubit gates

- Pauli gates:

\[
X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]
Quantum gates – one-qubit gates

- Pauli gates:

 \[
 X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
 \]

- Hadarmard gate:

 \[
 H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
 \]

 \[
 H|0\rangle = |+\rangle, \quad H|1\rangle = |--\rangle
 \]
Quantum gates – one-qubit gates

- Pauli gates:
 \[X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

- Hadarmard gate:
 \[H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \]
 \[H|0\rangle = |+\rangle, \quad H|1\rangle = |-\rangle \]

- Rotation about \(x \)-axis of the Bloch sphere:
 \[R_x(\theta) = \begin{pmatrix} \cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\ -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix} \]
Quantum gates – two-qubit gate

- The controlled-NOT (CNOT) gate:

\[
\text{CNOT} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

CNOT generates entanglement: separable state \(|+0\rangle_i\) is transformed to EPR (Einstein-Podolsky-Rosen) pair:

\[
\text{CNOT}(|+0\rangle_i) = \frac{1}{\sqrt{2}}(|00\rangle_i + |11\rangle_i)
\]
Quantum gates – two-qubit gate

- The controlled-NOT (CNOT) gate:

\[
CNOT = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

- CNOT generates entanglement: separable state \(| + 0 \rangle\) is transformed to EPR (Einstein-Podolsky-Rosen) pair:

\[
CNOT(| + 0 \rangle) = \frac{1}{\sqrt{2}}(|00 \rangle + |11 \rangle)
\]
Super-operators

- **Dynamics** of an open quantum system is described by master equation, Langevin equation, stochastic differential equation, e.g. the Lindblad form:

\[
\frac{d\rho}{dt} = -\frac{i}{\hbar} [H, \rho] + \sum_j [2L_j \rho L_j^\dagger - \{L_j^\dagger L_j, \rho\}]
\]
Dynamics of an open quantum system is described by master equation, Langevin equation, stochastic differential equation, e.g. the Lindblad form:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar}[H, \rho] + \sum_j [2L_j\rho L_j^\dagger - \{L_j^\dagger L_j, \rho\}]$$

Discrete-time description — super-operator:

$$\rho \mapsto \mathcal{E}(\rho)$$
Super-operators

- **Dynamics** of an open quantum system is described by master equation, Langevin equation, stochastic differential equation, e.g. the Lindblad form:

\[
\frac{d\rho}{dt} = -\frac{i}{\hbar}[H, \rho] + \sum_j [2L_j \rho L_j^\dagger - \{L_j^\dagger L_j, \rho\}]
\]

- Discrete-time description — *super-operator*:

\[
\rho \mapsto \mathcal{E}(\rho)
\]

- A super-operator is a mapping \(\mathcal{E} \) from (density) operators to themselves:
Super-operators

- **Dynamics** of an open quantum system is described by master equation, Langevin equation, stochastic differential equation, e.g. the Lindblad form:

\[
\frac{d\rho}{dt} = -\frac{i}{\hbar}[H, \rho] + \sum_j [2L_j \rho L_j^\dagger - \{L_j^\dagger L_j, \rho\}]
\]

- Discrete-time description — **super-operator**:

\[\rho \mapsto \mathcal{E}(\rho)\]

- A super-operator is a mapping \(\mathcal{E}\) from (density) operators to themselves:
 - completely positive;
Super-operators

- Dynamics of an open quantum system is described by master equation, Langevin equation, stochastic differential equation, e.g. the Lindblad form:

\[
\frac{d\rho}{dt} = -\frac{i}{\hbar} [H, \rho] + \sum_j [2L_j \rho L_j^\dagger - \{L_j^\dagger L_j, \rho\}]
\]

- Discrete-time description — super-operator:

\[\rho \mapsto \mathcal{E}(\rho)\]

- A super-operator is a mapping \(\mathcal{E}\) from (density) operators to themselves:
 - completely positive;
 - \(\text{tr}(\mathcal{E}(\rho)) \leq \text{tr}(\rho)\) for all \(\rho\).
Super-operators

- *Dynamics* of an open quantum system is described by master equation, Langevin equation, stochastic differential equation, e.g. the Lindblad form:

\[
\frac{d\rho}{dt} = -\frac{i}{\hbar} [H, \rho] + \sum_j [2L_j \rho L_j^\dagger - \{L_j^\dagger L_j, \rho\}]
\]

- Discrete-time description — *super-operator*:

\[
\rho \mapsto \mathcal{E}(\rho)
\]

- A super-operator is a mapping \(\mathcal{E}\) from (density) operators to themselves:
 - completely positive;
 - \(\text{tr}(\mathcal{E}(\rho)) \leq \text{tr}(\rho)\) for all \(\rho\).

- *Intuition*: a super-operator can be seen as a quantum counterpart of a transformation between probability distributions.
Kraus representation

- **Notation** — Löwner order: $A \sqsubseteq B$ if and only if $B - A$ is positive semidefinite.
Kraus representation

- **Notation** — Löwner order: \(A \subseteq B \) if and only if \(B - A \) is positive semidefinite.

- **Kraus Theorem**: Each super-operator \(\mathcal{E} \) has a Kraus representation:

\[
\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger
\]

for all density operators \(\rho \), where the set \(\{E_i\} \) of operators satisfies the sub-normalisation condition: \(\sum_i E_i^\dagger E_i \subseteq I \).
Example

The *bit flip channel* in quantum communication:

- It flips the state of a qubit from $|0\rangle$ to $|1\rangle$ and vice versa, with probability $1 - p$, $0 \leq p \leq 1$.

For example, $r = \frac{2}{3}|0\rangle - \frac{1}{3}|1\rangle$ is transformed by E to $E(r) = \frac{1}{6} + \frac{2}{3}p\frac{1}{6}$.

Example

The *bit flip channel* in quantum communication:

- It flips the state of a qubit from $|0\rangle$ to $|1\rangle$ and vice versa, with probability $1 - p$, $0 \leq p \leq 1$.
- The channel is modelled by super-operator:

$$
\mathcal{E}(\rho) = E_0 \rho E_0 + E_1 \rho E_1
$$

where $E_0 = \sqrt{p}I$, $E_1 = \sqrt{1-p}X$.

For example, $r = \frac{2}{3} |0\rangle + \frac{1}{3} |1\rangle$ is transformed by \mathcal{E} to $\mathcal{E}(r) = \frac{1}{6} + \frac{2}{3} p \frac{1}{3}$.

Example

The *bit flip channel* in quantum communication:

- It flips the state of a qubit from $|0\rangle$ to $|1\rangle$ and vice versa, with probability $1 - p$, $0 \leq p \leq 1$.
- The channel is modelled by super-operator:

$$\mathcal{E}(\rho) = E_0\rho E_0 + E_1\rho E_1$$

where $E_0 = \sqrt{p}I$, $E_1 = \sqrt{1 - p}X$.
- For example,

$$\rho = \frac{2}{3}|0\rangle\langle 0| + \frac{1}{3}|\rangle\langle \rangle = \frac{1}{6} \begin{pmatrix} 5 & -1 \\ -1 & 1 \end{pmatrix}$$

is transformed by \mathcal{E} to

$$\mathcal{E}(\rho) = \begin{pmatrix} \frac{1}{6} + \frac{2p}{3} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{5}{6} - \frac{2p}{3} \end{pmatrix}$$
Outline

Introduction

Basics of Quantum Theory

Graphs defined by Quantum Dynamics

Decomposition of the State Space

Algorithms for Computing Reachability in Quantum Graphs

Conclusion
Adjacency relation

Given a quantum system $G = \langle H, E \rangle$, where

- H is a finite-dimensional Hilbert space, the state space of G;

Definition: ρ, σ are two (mixed) states in H.

Notations:

$\text{span } X = \bigoplus_{i=0}^{n} a_i |y_i \rangle \in X; a_i \in \mathbb{C}$, $n \geq 1$.

$\text{supp}(\rho) = \text{span} \{ \text{eigen vectors of } \rho \text{ with nonzero eigen values} \}$.
Adjacency relation

Given a quantum system $G = \langle \mathcal{H}, \mathcal{E} \rangle$, where

- \mathcal{H} is a finite-dimensional Hilbert space, the state space of G;
- \mathcal{E} is a super-operator on \mathcal{H}, describing the dynamics of G.

Definition: ρ, σ are two (mixed) states in \mathcal{H}.

Notations:
Adjacency relation

Given a quantum system $\mathcal{G} = \langle \mathcal{H}, \mathcal{E} \rangle$, where
- \mathcal{H} is a finite-dimensional Hilbert space, the state space of \mathcal{G};
- \mathcal{E} is a super-operator on \mathcal{H}, describing the dynamics of \mathcal{G}.

Definition: ρ, σ are two (mixed) states in \mathcal{H}.
- σ is adjacent to ρ, written $\rho \rightarrow \sigma$, if

$$\text{supp}(\sigma) \subseteq \mathcal{E}(\text{supp}(\rho)).$$

Notations:
Adjacency relation

Given a quantum system $\mathcal{G} = \langle \mathcal{H}, \mathcal{E} \rangle$, where

- \mathcal{H} is a finite-dimensional Hilbert space, the state space of \mathcal{G};
- \mathcal{E} is a super-operator on \mathcal{H}, describing the dynamics of \mathcal{G}.

Definition: ρ, σ are two (mixed) states in \mathcal{H}.

- σ is adjacent to ρ, written $\rho \rightarrow \sigma$, if

$$\text{supp}(\sigma) \subseteq \mathcal{E}(\text{supp}(\rho)).$$

Notations:

- $\text{span } X = \left\{ \sum_{i=0}^{n} \alpha_i |\psi_i\rangle : |\psi_i\rangle \in X, \alpha_i \in \mathbb{C}, n \geq 1 \right\}$.

Adjacency relation

Given a quantum system $\mathcal{G} = \langle \mathcal{H}, \mathcal{E} \rangle$, where
- \mathcal{H} is a finite-dimensional Hilbert space, the state space of \mathcal{G};
- \mathcal{E} is a super-operator on \mathcal{H}, describing the dynamics of \mathcal{G}.

Definition: ρ, σ are two (mixed) states in \mathcal{H}.
- σ is adjacent to ρ, written $\rho \rightarrow \sigma$, if
 \[\text{supp}(\sigma) \subseteq \mathcal{E}(\text{supp}(\rho)). \]

Notations:
- $\text{span } X = \{ \sum_{i=0}^{n} \alpha_i |\psi_i\rangle : |\psi_i\rangle \in X, \alpha_i \in \mathbb{C}, n \geq 1 \}$.
- $\text{supp}(\rho) = \text{span}\{\text{eigen vectors of } \rho \text{ with nonzero eigen values}\}$.
Reachability

- A sequence

\[\rho_0 \rightarrow \rho_1 \rightarrow \cdots \rightarrow \rho_n \]

of adjacent density operators is a path from \(\rho_0 \) to \(\rho_n \).
Reachability

- A sequence
 \[\rho_0 \rightarrow \rho_1 \rightarrow \cdots \rightarrow \rho_n \]
 of adjacent density operators is a path from \(\rho_0 \) to \(\rho_n \).
- If there is a path from \(\rho \) to \(\sigma \) then \(\sigma \) is reachable from \(\rho \).
Reachability

- A sequence
 \[\rho_0 \rightarrow \rho_1 \rightarrow \cdots \rightarrow \rho_n \]
 of adjacent density operators is a **path** from \(\rho_0 \) to \(\rho_n \).
- If there is a path from \(\rho \) to \(\sigma \) then \(\sigma \) is **reachable** from \(\rho \).
- The **reachable space** of \(\rho \) in \(\mathcal{G} \) is
 \[\mathcal{R}_G(\rho) = \text{span}\{ |\psi\rangle \in \mathcal{H} : |\psi\rangle \text{ is reachable from } \rho \text{ in } \mathcal{G} \} \].
Theorem (Transitive Closure)

\[\mathcal{R}_G(\rho) = \bigvee_{i=0}^{d-1} \text{supp}(\mathcal{E}^i(\rho)) \]

where \(d = \dim \mathcal{H} \).

Notations:

- \(\bigvee_i X_i = \text{span} \ (\bigcup_i X_i) \).
Strong connectivity

A subspace X of \mathcal{H} is **strongly connected** in \mathcal{G} if for any $|\phi\rangle, |\psi\rangle \in X$,

$$|\phi\rangle \in \mathcal{R}_{G_X}(\psi) \text{ and } |\psi\rangle \in \mathcal{R}_{G_X}(\phi)$$
Strong connectivity
A subspace X of \mathcal{H} is strongly connected in \mathcal{G} if for any $|\varphi\rangle, |\psi\rangle \in X$, $|\varphi\rangle \in \mathcal{R}_{\mathcal{G}_X}(\psi)$ and $|\psi\rangle \in \mathcal{R}_{\mathcal{G}_X}(\varphi)$

Strongly Connected Components
A maximal strongly connected subspace is a strongly connected component (SCC). [Zorn’s Lemma \Rightarrow Existence]
Strong connectivity
A subspace X of \mathcal{H} is strongly connected in \mathcal{G} if for any $|\varphi\rangle, |\psi\rangle \in X$,

$$|\varphi\rangle \in \mathcal{R}_{g_X}(\psi) \text{ and } |\psi\rangle \in \mathcal{R}_{g_X}(\varphi)$$

Strongly Connected Components
A maximal strongly connected subspace is a strongly connected component (SCC). [Zorn’s Lemma \Rightarrow Existence]

Bottom Strongly Connected Component
A subspace X of \mathcal{H} is a bottom strongly connected component (BSCC) if it is a SCC and invariant in \mathcal{E}:

$$\mathcal{E}(X) \subseteq X.$$
Outline

Introduction

Basics of Quantum Theory

Graphs defined by Quantum Dynamics

Decomposition of the State Space

Algorithms for Computing Reachability in Quantum Graphs

Conclusion
Transient Subspaces

- **Finite-state Markov chain**: a state is transient if and only if the probability at this state will eventually become 0.
Transient Subspaces

- **Finite-state Markov chain**: a state is transient if and only if the probability at this state will eventually become 0.
- A subspace $X \subseteq \mathcal{H}$ is transient in $\mathcal{G} = \langle \mathcal{H}, \mathcal{E} \rangle$ if

$$\lim_{k \to \infty} \text{tr}(P_X \mathcal{E}^k(\rho)) = 0$$

for all ρ.
Largest Transient Subspace

Notation: The asymptotic average of a super-operator \(\mathcal{E} \):

\[
\mathcal{E}_\infty = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}^n.
\]

Theorem

\[
\mathcal{H} = \mathcal{E}_\infty(\mathcal{H}) \oplus \mathcal{E}_\infty(\mathcal{H})^\perp.
\]

\[
T_\mathcal{E} := \mathcal{E}_\infty(\mathcal{H})^\perp
\]

is the largest transient subspace.
Decomposition Theorem

\[\mathcal{E}_\infty(\mathcal{H}) \]

can be decomposed into the direct sum of some orthogonal BSCCs.

Corollary

The state space \(\mathcal{H} \) can be decomposed into

\[\mathcal{H} = B_1 \oplus \cdots \oplus B_u \oplus T_\varepsilon \]

where \(B_i \)'s are orthogonal BSCCs.
Theorem (Weak Unique Decomposition)

Let
\[\mathcal{H} = B_1 \oplus \cdots \oplus B_u \oplus T_\varepsilon = D_1 \oplus \cdots \oplus D_v \oplus T_\varepsilon \]

be two decompositions, where \(B_i \)'s and \(D_i \)'s are arranged according to the increasing order of the dimensions. Then:

1. \(u = v \);
Theorem (Weak Unique Decomposition)

Let

\[\mathcal{H} = B_1 \oplus \cdots \oplus B_u \oplus T_\mathcal{E} = D_1 \oplus \cdots \oplus D_v \oplus T_\mathcal{E} \]

be two decompositions, where \(B_i \)s and \(D_i \)s are arranged according to the increasing order of the dimensions. Then:

1. \(u = v \);
2. \(\dim B_i = \dim D_i \) for all \(i \).
Outline

Introduction

Basics of Quantum Theory

Graphs defined by Quantum Dynamics

Decomposition of the State Space

Algorithms for Computing Reachability in Quantum Graphs

Conclusion
Decomposition Algorithm

BSCC decomposition in time $O(d^8)$, where $d = \dim \mathcal{H}$.

Why Classical Algorithms, DFS, BFS, etc. Don’t Work?

- State space of a quantum graph is a continuum (uncountable set).
- Mathematical structure in a quantum graph: adjacency + linear algebra (superposition)
- DFS, BFS, etc. break the linear algebraic structure.
Decomposition Algorithm
BSCC decomposition in time $O(d^8)$, where $d = \dim \mathcal{H}$.

Why Classical Algorithms, DFS, BFS, etc. Don’t Work?

- State space of a quantum graph is a continuum (uncountable set).
- Mathematical structure in a quantum graph:
 adjacency + linear algebra (superposition)
DFS, BFS, etc. break the linear algebraic structure.
Basic Idea for Computing Quantum Reachability

- Compute

\[\sum_{n=0}^{\infty} \mathcal{E}^n(\rho) \]

where \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger \).
Basic Idea for Computing Quantum Reachability

- Compute

\[
\sum_{n=0}^{\infty} \mathcal{E}^n(\rho)
\]

where \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger\).

- Key Lemma:

\[
(\mathcal{E}(A) \otimes I) |\Phi\rangle = M(A \otimes I) |\Phi\rangle
\]

where:
Basic Idea for Computing Quantum Reachability

- **Compute**

\[
\sum_{n=0}^{\infty} \mathcal{E}^n(\rho)
\]

where \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger \).

- **Key Lemma:**

\[
(\mathcal{E}(A) \otimes I)\Phi = M(A \otimes I)\Phi
\]

where:

- Matrix representation of super-operators: \(M = \sum_i E_i \otimes E_i^* \).
Basic Idea for Computing Quantum Reachability

- Compute

\[\sum_{n=0}^{\infty} \mathcal{E}^n(\rho) \]

where \(\mathcal{E}(\rho) = \sum_i E_i \rho E^\dagger \).

- **Key Lemma:**

\[(\mathcal{E}(A) \otimes I) |\Phi\rangle = M(A \otimes I) |\Phi\rangle \]

where:

- Matrix representation of super-operators: \(M = \sum_i E_i \otimes E_i^* \).
- (Unnormalised) maximal entanglement: \(|\Phi\rangle = \sum_j |jj\rangle \).
Basic Idea for Computing Quantum Reachability

- Compute

\[\sum_{n=0}^{\infty} \mathcal{E}^n(\rho) \]

where \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger \).

- **Key Lemma:**

\[(\mathcal{E}(A) \otimes I) |\Phi\rangle = M(A \otimes I) |\Phi\rangle \]

where:

- Matrix representation of super-operators: \(M = \sum_i E_i \otimes E_i^* \).
- (Unnormalised) maximal entanglement: \(|\Phi\rangle = \sum_j |jj\rangle \).

- Iteration of super-operator \(\Rightarrow \) multiplication of matrix:

\[\sum_{n=0}^{\infty} \mathcal{E}^n(\rho) \Rightarrow \sum_{n=0}^{\infty} M^n(\rho \otimes I) \]
Outline

Introduction

Basics of Quantum Theory

Graphs defined by Quantum Dynamics

Decomposition of the State Space

Algorithms for Computing Reachability in Quantum Graphs

Conclusion
Open Problems

- Further develop the theory of "quantum graphs":
 e.g. how to define "spanning trees" in a "quantum graph"?

Open Problems

- Further develop the theory of “quantum graphs”: e.g. how to define “spanning trees” in a “quantum graph”?

- How to search “quantum databases” based QRAM?

Open Problems

- Further develop the theory of “quantum graphs”: e.g. how to define “spanning trees” in a “quantum graph”?
- How to search “quantum databases” based QRAM?

- Connections to “non-commutative graphs”?

Thank You!
Quantum measurements

- The way to extract information about a quantum system is quantum measurement.
Quantum measurements

- The way to **extract information** about a quantum system is quantum measurement.
- In quantum computation, measurement is used to **read out a computational result**.
Quantum measurements

- The way to extract information about a quantum system is quantum measurement.
- In quantum computation, measurement is used to read out a computational result.
- A measurement is modelled as a set of operators $M = \{M_m\}$ with

$$\sum_m M_m^\dagger M_m = I.$$
Quantum measurements

- The way to extract information about a quantum system is quantum measurement.
- In quantum computation, measurement is used to read out a computational result.
- A measurement is modelled as a set of operators $M = \{M_m\}$ with
 \[\sum_m M_m^\dagger M_m = I. \]
- If a quantum system was in pure state $|\psi\rangle$ before the measurement, then:
Quantum measurements

- The way to **extract information** about a quantum system is quantum measurement.
- In quantum computation, measurement is used to **read out a computational result**.
- A **measurement** is modelled as a set of operators $M = \{M_m\}$ with

$$\sum_m M_m^\dagger M_m = I.$$

- If a quantum system was in **pure state** $|\psi\rangle$ before the measurement, then:
 - the probability that measurement outcome is λ:

$$p(m) = ||M_m|\psi\rangle||^2$$

where $|| \cdot ||$ is the length of vector.
Quantum measurements

- The way to **extract information** about a quantum system is quantum measurement.

- In quantum computation, measurement is used to **read out a computational result**.

- A *measurement* is modelled as a set of operators $M = \{M_m\}$ with
 \[
 \sum_m M_m^\dagger M_m = I.
 \]

- If a quantum system was in **pure state** $|\psi\rangle$ before the measurement, then:
 - the probability that measurement outcome is λ:
 \[
 p(m) = ||M_m|\psi\rangle||^2
 \]
 where $|| \cdot ||$ is the length of vector.
 - the state of the system after the measurement:
 \[
 \frac{M_m|\psi\rangle}{\sqrt{p(m)}}
 \]
Quantum measurements

- If we perform a measurement M on a system in mixed state ρ, then:

\[p(m) = \text{tr}(M_m \rho M_m^\dagger) \]

A major difference between classical and quantum systems:
- Measuring a classical system does not change its state.
- The state of a quantum system is changed after measuring it.
Quantum measurements

- If we perform a measurement M on a system in mixed state ρ, then:
 - an outcome m is observed with probability
 \begin{equation}
 p(m) = \text{tr}(M_m \rho M_m^\dagger);
 \end{equation}

 - A major difference between classical and quantum systems:
 - Measuring a classical system does not change its state.
 - The state of a quantum system is changed after measuring it.
Quantum measurements

- If we perform a measurement M on a system in mixed state ρ, then:
 - an outcome m is observed with probability
 \[p(m) = \text{tr}(M_m \rho M_m^\dagger); \]
 - after that, the system will be in state
 \[M_m \rho M_m^\dagger / p(m). \]
Quantum measurements

- If we perform a measurement M on a system in mixed state ρ, then:
 - an outcome m is observed with probability
 \[p(m) = \text{tr}(M_m \rho M_m^\dagger); \]
 - after that, the system will be in state
 \[M_m \rho M_m^\dagger / p(m). \]

- A major difference between classical and quantum systems:
Quantum measurements

- If we perform a measurement \(M \) on a system in mixed state \(\rho \), then:
 - an outcome \(m \) is observed with probability
 \[
 p(m) = \text{tr}(M_m \rho M_m^\dagger);
 \]
 - after that, the system will be in state
 \[
 M_m \rho M_m^\dagger / p(m).
 \]

- A major difference between classical and quantum systems:
 - Measuring a classical system does not change its state.
Quantum measurements

- If we perform a measurement M on a system in mixed state ρ, then:
 - an outcome m is observed with probability
 \[p(m) = \text{tr}(M_m \rho M_m^\dagger); \]
 - after that, the system will be in state
 \[M_m \rho M_m^\dagger / p(m). \]

- A major difference between classical and quantum systems:
 - Measuring a classical system does not change its state.
 - The state of a quantum systems is changed after measuring it.
Quantum measurements – example

- The measurement on a qubit in the computational basis \{\ket{0}, \ket{1}\} is \(M = \{M_0, M_1\} \):

\[
M_0 = \ket{0}\bra{0} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_1 = \ket{1}\bra{1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\]
Quantum measurements – example

- The measurement on a qubit in the computational basis \{\ket{0}, \ket{1}\} is \(M = \{M_0, M_1\}\):

\[
M_0 = \ket{0}\bra{0} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_1 = \ket{1}\bra{1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\]

- If we perform \(M\) on a qubit in state \(\ket{\psi} = \alpha\ket{0} + \beta\ket{1}\):

\[
\text{Probability for outcome 0 is } \left|\alpha\right|^2, \quad \text{probability for outcome 1 is } \left|\beta\right|^2.
\]
Quantum measurements – example

The measurement on a qubit in the computational basis \{\ket{0}, \ket{1}\} is \(M = \{M_0, M_1\} \):

\[
M_0 = \ket{0}\bra{0} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_1 = \ket{1}\bra{1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\]

If we perform \(M \) on a qubit in state \(\ket{\psi} = \alpha\ket{0} + \beta\ket{1} \):

- the probability that we get outcome 0 is \(|\alpha|^2 \);
Quantum measurements – example

- The measurement on a qubit in the computational basis $\{|0\rangle, |1\rangle\}$ is $M = \{M_0, M_1\}$:

 $M_0 = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_1 = |1\rangle\langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

- If we perform M on a qubit in state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$:
 - the probability that we get outcome 0 is $|\alpha|^2$;
 - the probability that we get outcome 1 is $|\beta|^2$.
Quantum measurements – example

- The measurement on a qubit in the computational basis \{ |0\rangle, |1\rangle \} is \(M = \{ M_0, M_1 \} \):

\[
M_0 = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_1 = |1\rangle\langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\]

- If we perform \(M \) on a qubit in state \(|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \):
 - the probability that we get outcome 0 is \(|\alpha|^2 \);
 - the probability that we get outcome 1 is \(|\beta|^2 \).

- If we perform \(M \) on a qubit in (mixed) state

\[
\rho = \frac{2}{3} |0\rangle\langle 0| + \frac{1}{3} |+\rangle\langle +| = \frac{1}{6} \begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix}
\]
Quantum measurements – example

- The measurement on a qubit in the computational basis \{ |0\rangle, |1\rangle \} is \(M = \{ M_0, M_1 \} \):

\[
M_0 = |0\rangle \langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_1 = |1\rangle \langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\]

- If we perform \(M \) on a qubit in state \(|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \):
 - the probability that we get outcome 0 is \(|\alpha|^2 \);
 - the probability that we get outcome 1 is \(|\beta|^2 \).

- If we perform \(M \) on a qubit in (mixed) state

\[
\rho = \frac{2}{3} |0\rangle \langle 0| + \frac{1}{3} |+\rangle \langle +| = \frac{1}{6} \begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix}
\]

 - the probability that we get outcome 0 is \(p(0) = tr (M_0 \rho M_0) = \frac{5}{6} \) and then the qubit is in state \(|0\rangle \).
Quantum measurements – example

- The measurement on a qubit in the computational basis \(\{ |0\rangle, |1\rangle \} \) is \(M = \{ M_0, M_1 \} \):

\[
M_0 = |0\rangle \langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_1 = |1\rangle \langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\]

- If we perform \(M \) on a qubit in state \(|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \):
 - the probability that we get outcome 0 is \(|\alpha|^2 \);
 - the probability that we get outcome 1 is \(|\beta|^2 \).

- If we perform \(M \) on a qubit in (mixed) state

\[
\rho = \frac{2}{3} |0\rangle \langle 0| + \frac{1}{3} |+\rangle \langle +| = \frac{1}{6} \begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix}
\]

 - the probability that we get outcome 0 is \(p(0) = tr (M_0 \rho M_0) = \frac{5}{6} \) and then the qubit is in state \(|0\rangle \).
 - Outcome 1 is obtained with probability \(p(1) = \frac{1}{6} \) and after that the qubit is in \(|1\rangle \).